Neutral Density Filters as a Tool for Cycloplegic Plusoptix-Photorefractor Measurements: An Explorative Study

Author:

Maria van Minderhout Helena,Joosse Maurits Victor,Schalij-Delfos Nicoline Elisabeth

Abstract

Purpose: The purpose of this study is to investigate the usefulness of neutral-density (ND) filters in cycloplegic-Plusoptix-photorefractor measurements. Methods: No-filter and ND-filter 0.04, 0.1 and 0.2 cycloplegic-Plusoptix-photorefractor measurements were made in 42 hypermetropic eyes. Sphere, cylinder, spherical equivalent (SEQ), J0, and J45 values were compared. Results: Mean Plusoptix-photorefractor pupil sizes were 7.7±0.68 and 7.7±0.72 mm The no-filter failure rate was 16%, with 87% in pupils >7.8 mm. Mean no-filter sphere, cylinder, SEQ, J0 and J45 values were +0.34±0.35D, -0.29±0.22D, +0.20±0.36, -0.00±0.15, and +0.02±0.11, respectively. Only ND-filter-0.04 provided 5% more successful measurements and a clinically significant alteration in the percentage of values exceeding 0.5D for sphere and SEQ (-10% and -20%), but not for cylinder (+5%). Despite the increased accuracy, 21% of the spherical outcome exceeded 0.50D. Furthermore, the single-measure-intraclass-correlation-coefficient between no-filter and ND-filter-0.04 outcome was moderate (sphere 0.78 (0.62-0.87), cylinder 0.59 (0.35-0.75), SEQ 0.68 (0.48-0.82), J0 0.73 (0.54-0.84) and J45 0.57 (0.50-0.86)) and indicated significant individual variation. Bland-Altman-analyses indicated significant bias for sphere and SEQ; p=0.038 and p=0.030. Conclusion: ND-filter-0.04 resulted in a larger proportion of successful measurements and an increased accuracy. However, an unacceptable percentage of inaccuracy was still present compared to retinoscopy. There could be validity issues with the ND-filter 0.04 or the baseline no-filter readings at the start. We conclude that cycloplegic Plusoptix-photorefraction, even with the use of a 0.04 ND filter, is not a suitable method for exact objective refraction purposes in children.

Publisher

Bentham Science Publishers Ltd.

Subject

Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3