Enhanced Bioavailability and Higher Uptake of Brain-Targeted Surface Engineered Delivery System of Naringenin developed as a Therapeutic for Autism Spectrum Disorder

Author:

Kuhad Anurag1,Bhandari Ranjana1,Paliwal Jyoti K1

Affiliation:

1. Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh - 160 014, India

Abstract

Background: Neuroinflammation resulting from oxidative and nitrosative stress is associated with various neurological disorders and involves the generation of pro-inflammatory cytokines and microglial activation. Dietary phytochemicals are safer and more valuable adjunct neurotherapeutic agents which can be added to the therapeutic regimen. These compounds provide neuroprotection by the modulation of various signaling pathways. Introduction: Naringenin (NGN) is a phytochemical having low oral bioavailability because of poor solubility, and adding to this limitation is enhanced efflux by P-glycoprotein transporters in neuroinflammatory diseases. Methods: Hence, as a solution for these limitations, naringenin encapsulated poly-lactic-co-glycolic acid (PLGA) nanocarriers were developed using the nanoprecipitation technique and coated with 1% glutathione (GSH) and 1% Tween 80 to enhance brain delivery. Results: Coated and uncoated NGN-PLGA nanoparticles (NGN-PLGA-NPs) were spherical, monodispersed, stable, and non-toxic, with a particle size of less than 200 nm. They had negative zeta-potential values, 80% entrapment efficiency, and sustained drug release of 81.8% (uncoated), 80.13%, and 78.43% (coated) in 24 hours. FT-IR, DSC, PXRD, and NMR confirmed the drug encapsulation and coating over nanoparticles. In-vivo brain uptake showed greater fluorescence intensity of the coated nanoparticles in the brain than uncoated nanoparticles. In addition, there was a 2.33-fold increase in bioavailability after coating compared to naringenin suspension and enhanced brain uptake. Conclusion: Present studies indicate sustained and targeted brain delivery of naringenin via the ligandcoated delivery system by inhibiting enhanced P-glycoprotein (P-gp) efflux occurring in autism spectrum disorders due to neuroinflammation.

Funder

SERB, Department of Science and Technology

All India Council of Technical Education

University Grants Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3