Amalgamation of Nanotechnology for Delivery of Bioactive Constituents in Solid Tumors

Author:

Ahmad Sayeed1,Husain Syed Akhtar2,Parveen Rabea21,Mohapatra Sradhanjali1

Affiliation:

1. Bioactive Natural Product Laboratory, Jamia Hamdard, New Delhi-110062, India

2. Department of Biosciences, Human Genetics Laboratory, Jamia Millia Islamia, New Delhi-110025, India

Abstract

Abstract: Solid tumor is one of the highly prevalent cancers among humans and the treatment is often restricted by drug resistance to chemotherapeutics. One of the main reasons might be attributed to the limited penetration ability of drugs through tumor tissues due to heterogeneity within the tumor microenvironment. Over the recent years, so much research has been carried out for developing phytochemicals as cancer therapeutic agents. These are well-established as potential candidates for preventing and treating cancer, especially solid tumors, but have limited clinical applications due to their large molecular size, low bioavailability, stability, and target specificity, along with other side effects when used at high concentrations. There has been a widely proposed nano delivery system of bioactive constituents to overcome these obstacles. This nanostructured system might be able to potentiate the action of plant constituents, by reducing the side effects at a lesser dose with improved efficacy. Indeed, nanosystems can deliver the bioactive constituents at a specific site in the desired concentration and avoid undesired drug exposure to normal tissues. Furthermore, these nanoparticles demonstrate high differential absorption efficiency in the target cells over normal cells by preventing them from interacting prematurely with the biological environment, enhancing the cellular uptake and retention effect in disease tissues, while decreasing the toxicity. This review discusses various treatment stratagems used for the management of solid tumors with special emphasis on nanocarrier systems as a potential treatment strategy for herbal drugs. This also covers a wide list of plants that are used for the treatment of solid tumors and cancers along with their mechanisms of action and enlists various nanocarrier systems used for different phytoconstituents. This review gives a brief idea about different plants and their constituents exploited for their anticancer/antitumor potential along with several nanocarrier systems employed for the same and gives future directions to stress the nanotechnology platform as a valuable approach for the prevention and treatment of solid tumors.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3