A Review of the Use of Metallic Nanoparticles as a Novel Approach for Overcoming the Stability Challenges of Blood Products: A Narrative Review from 2011-2021

Author:

Mehrizi Tahereh Zadeh1,Ardestani Mehdi Shafiee2ORCID,Kafiabad Sedigheh Amini1

Affiliation:

1. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran

2. Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Purpose: To obtain safe and qualified blood products (e.g., platelets, plasma, and red blood cells), various limitations such as limited shelf life (especially for platelets) and stability must be addressed. In this review study, the most commonly used metal nanomaterials (e.g., gold, silver, iron, and magnetic) reported in the literature from 2011 to 2021 were discussed owing to their unique properties, which provide exciting approaches to overcome these limitations and improve the stability, safety, and quality of blood products. Novelty: This study reviews for the first time the results of studies (from 2011 to 2021) that consider the effects of various metallic nanoparticles on the different blood products. Results: The results of this review study showed that some metallic nanoparticles are effective in improving the stability of plasma proteins. For this purpose, modified Fe3O4 magnetic nanoparticles and citrate-AuNPs protect albumin products against stressful situations. Also, SiO2 microspheres and silicacoated magnetite nanoparticles are highly capable of improving IgG stability. ZnO nanoparticles also reduced thrombin production, and protein-coated GMNP nanoparticles prevented unwanted leakage of factor VIII through blood vessels. Furthermore, the stability and longevity of erythrocytes can be improved by AuNP nanoparticles and Zr-based organic nanoparticles. In addition, platelet storage time can be improved using PEGylated Au and functionalized iron oxide nanoparticles. Suggestion: According to the results of this study, it is suggested that further research should be conducted on metal nanoparticles as the most promising candidates to prepare metal nanoparticles with improved properties to increase the stability of various blood products.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3