Affiliation:
1. College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
2. Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, United States
Abstract
Background:
In this study, a liposomal gel based on a pH-gradient method was used to increase
the skin-layer retention of monocrotaline (MCT) for topical administration.
Methods:
Using the Box-Behnken design, different formulations were designed to form liposome suspensions
with optimal encapsulation efficiency (EE%) and stability factor (KE). In order to keep MCT
in liposomes and accumulate in skin slowly and selectively, MCT liposome suspensions were engineered
into gels.
Results:
A pH-gradient method was used to prepare liposome suspensions. The optimal formulation of
liposome suspensions (encapsulation efficiency: 83.10 ± 0.21%) was as follows: MCT 12 mg, soybean
phosphatidyl choline (sbPC) 200 mg, cholesterol (CH) 41 mg, vitamin E (VE) 5 mg, and citric acid
buffer solution (CBS) 4.0 10 mL (pH 7.0). The final formulation of liposomal gels consisted of 32 mL
liposome suspensions, 4.76 mL deionized water, 0.40 g Carbopol-940, 1.6 g glycerol, 0.04 g
methylparaben, and a suitable amount of triethanolamine for pH value adjustment. The results of in
vitro drug release showed that MCT in liposomal gels could be released in 12 h constantly in physiological
saline as a Ritger-Peppas model. Compared with plain MCT in gel form, liposomal MCT in gel had
higher skin retention in vitro.
Conclusion:
In this study, liposomal gels were formed for greater skin retention of MCT. It is potentially
beneficial for reducing toxicities of MCT by topical administration with liposomal gel.
Funder
Zhejiang Chinese Medical University
National Natural Science Foundation of China
Publisher
Bentham Science Publishers Ltd.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献