Development of L-Lysine Amino Acid-Based Co-Crystal of Telmisartan Using Crystal Engineering Approach to Improve Solubility, Dissolution, and Micrometric Properties

Author:

Bhatt Nitin Kumar1,Haneef Jamshed2,Vyas Manish3,Khatik Gopal L.1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar- Delhi, Phagwara (Punjab) 144411, India

2. School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi, Delhi, 110062, India

3. Department of Ayurveda, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, Phagwara (Punjab) 144411, India

Abstract

Aim: To develop a co-crytsal of Telmisartan for enhancing its solubility in water. Background: Intermolecular interaction happens in crystal packing; it utilizes and helps to understand the design of new solid with their respective chemical and physical properties called crystal engineering. It is a blueprint of molecular solids with specific chemical and physical properties through an understanding and handling of intermolecular interaction for increasing the solubility, in case of poor water-soluble drugs. Objectives: The study was taken under consideration with an aim to generate and synthesize a cocrystal form of Telmisartan (TEL) with L-lysine to improve its water solubility, dissolution, and micrometric properties. Methods: Using dry grinding technique, solvent evaporation and cooling crystallization, the results revealed a generation of co-crystals with enhanced solubility by liquid drop grinding method. Hence, this process was further explored to investigate various formulations and process parameters that could significantly affect the crystal solubility, dissolution, and micrometric properties. Results: The solubility of TEL co-crystals was enhanced by L-lysine. Further, the optimized batch was subjected to its micrometric evaluation and physiochemical characterization like FT-IR, NMR, PXRD. The result of the micrometric evaluation showed better results as compared to standards. The dissolution studies also showed a better dissolution rate for TEL co-crystal tablets than TEL tablets formulation. Conclusion: Co-crystals of TEL with L-lysine showed better solubility and dissolution rate.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3