Enhanced Solubility of Albendazole in Cyclodextrin Inclusion Complex: A Molecular Modeling Approach and Physicochemical Evaluation

Author:

de Melo Camila Gomes1ORCID,da Costa Lucas Amadeu Gonzaga1ORCID,Rabello Marcelo Montenegro2ORCID,de Albuquerque Wanderley Sales Victor1ORCID,Ferreira Aline Silva1ORCID,da Silva Paulo César Dantas1ORCID,Nishimura Rodolfo Hideki Vicente2ORCID,da Silva Rosali Maria Ferreira1ORCID,de Araújo Rolim Larissa2ORCID,Neto Pedro José Rolim1ORCID

Affiliation:

1. Laboratório de Tecnologia dos Medicamentos, Universidade Federal de Pernambuco, Recife/PE, Brazil

2. Central de Análise de Fármacos Medicamentos e Alimentos, Universidade Federal do Vale do São Francisco, Petrolina/PE, Brazil

Abstract

Background: Albendazole (ABZ) is the drug of choice for the treatment of a variety of human and veterinary parasites. However, it has low aqueous solubility and low bioavailability. Cyclodextrins (CD) are pharmaceutical excipients with the ability to modulate the solubilization property of hydrophobic molecules. Objective: The aim of the study was to analyze through in vitro and in silico studies (Autodock Vina software and CycloMolder platform) the formation of inclusion complexes between ABZ, β-cyclodextrin (β-CD) and its derivatives Methyl-β-cyclodextrin (M-β-CD) and Hydroxypropyl-β-cyclodextrin (HP-β-CD). Methods: The most stable inclusion complexes were produced by the kneading method and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-Ray Diffraction (XRD), determination of the ABZ content and in vitro dissolution profile. Results: Molecular modeling revealed that inclusion complexes between HP-β-CD:ABZ (in the proportion 1:1 and 2:1) presented the lowest formation energy and the highest number of intermolecular interactions, showing that the use of more cyclodextrins does not generate gains in the stability of the complex. On the characterization tests, the complexes experimentally obtained by the kneading method demonstrated highly suggestive parameters, including ABZ in HP-β-CD in both molar proportions, suppression of bands in the infrared spectrum, displacement of the drug's melting temperature in DSC, crystallinity halos instead of the characteristic peaks of ABZ crystals in the XRD and a release of more than 80% of ABZ in less than 5 minutes, dissolution efficiency of up to 92%. Conclusion: In silico studies provided a rational selection of the appropriate complexes of cyclodextrin, enabling the elaboration of more targeted complexes, decreasing time and costs for elaboration of new formulations, thereby increasing the oral biodisponibility of ABZ.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3