Preparation, Characterization and Prevention of Auto-oxidation of Amorphous Sirolimus by Encapsulation in Polymeric Films Using Hot Melt Extrusion

Author:

Kanaujia Parijat1,Poovizhi Ponnammal1,Ng Wai Kiong1,Tan Reginald B. H.1

Affiliation:

1. Institute of Chemical and Engineering Sciences, 1, Pesek Road Jurong Island, Singapore-627833, Singapore

Abstract

Background: Sirolimus (SIR) is a macrocyclic lactone antibiotic and used therapeutically as a potent immunosuppressant for prophylaxis of kidney transplant rejection. The development of an oral dosage form is challenging because of very poor aqueous solubility (2.6µg/ml). The oral bioavailability of SIR is only 15-20 % and is affected by food and other drugs. The main reasons for low bioavailability are intestinal degradation by enzymes especially by cytochrome P4503A4, efflux by P-glycoprotein and hepatic first-pass metabolism. Objective: The main objective was to prepare a mouth dissolving film dosage form of amorphous SIR to improve dissolution. Methods: Crystalline SIR was transformed to its form amorphous by milling for 2 h at room temperature. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) were used for characterisation. The stability of amorphous SIR was studied at 4°C and 40°C/75% RH. Amorphous SIR was formulated as oral films by melt extrusion with polyvinylpyrrolidone- vinyl acetate (PVP-VA), Soluplus® and hydroxypropyl cellulose (HPC) as carriers. The films were characterized for drug content, physical state, dissolution profile and stability at 4°C and 40°C/75% RH. Results: The PRXD and DSC confirmed the conversion of crystalline SIR to amorphous form by milling. The solubility of amorphous SIR was several folds higher than its crystalline form, but amorphous SIR was highly unstable at all tested temperatures (4° and 40°C). The extruded films exhibited higher dissolution and stability compared to milled SIR powder alone, but the process of extrusion had some detrimental effect on the chemical stability of amorphous SIR. Conclusion: The film formulations showed a significant improvement in the storage stability of the amorphous form of SIR and the solubility advantage of the amorphous form was evident in the dissolution testing. The oral films can potentially improve the bioavailability of SIR by absorption through the buccal mucosa.

Funder

Economic Development Board - Singapore

GlaxoSmithKline

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3