Roxithromycin and rhEGF Co-loaded Reactive Oxygen Species Responsive Nanoparticles for Accelerating Wound Healing

Author:

Ding Jun1,Chen Dan2,Hu Jun3,Zhang Dinglin4,Gou Yajun5,Wu Yaguang2

Affiliation:

1. Department of Ultrasound, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

2. Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

3. Department of Neurology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China

4. Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China

5. Department of Orthopedics, Shapingba District People's Hospital, Chongqing, Chongqing 400030, China

Abstract

Background: Bacterial infection can delay wound healing and is therefore a major threat to public health. Although various strategies have been developed to treat bacterial infections, antibiotics remain the best option to combat infections. The inclusion of growth factors in the treatment approach can also accelerate wound healing. The co-delivery of antibiotics and growth factors for the combined treatment of wounds needs further investigation. Objective: Here we aimed to develop antibiotic and growth factor co-loaded nanoparticles (NPs) to treat Staphylococcus aureus-infected wounds. Methods: By using our previously prepared reactive oxygen species-responsive material (Oxi-αCD), roxithromycin (ROX)-loaded NPs (ROX/Oxi-αCD NPs) and recombinant human epidermal growth factor (rhEGF)/ROX co-loaded NPs (rhEGF/ROX/Oxi-αCD NPs) were successfully fabricated. The in vivo efficacy of this prepared nanomedicine was evaluated in mice with S. aureus-infected wounds. Results: ROX/Oxi-αCD NPs and rhEGF/ROX/Oxi-αCD NPs had a spherical structure and their particle sizes were 164 ± 5 nm and 190 ± 8 nm, respectively. The in vitro antibacterial experiments showed that ROX/Oxi-αCD NPs had a lower minimum inhibitory concentration than ROX. The in vivo animal experiments demonstrated that rhEGF/ROX/Oxi-αCD NPs could significantly accelerate the healing of S. aureus-infected wounds as compared to the free ROX drug and ROX/Oxi-αCD NPs (P < 0.05). Conclusion: ROX and rhEGF co-loaded NPs can effectively eliminate bacteria in wounds and accelerate wound healing. Our present work could provide a new strategy to combat bacteria-infected wounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3