In Vitro and In Vivo Evaluation of Novel DTX-Loaded Multifunctional Heparin-Based Polymeric Micelles Targeting Folate Receptors and Endosomes

Author:

Kazemi Moloud1ORCID,Emami Jaber1,Hasanzadeh Farshid2,Minaiyan Mohsen3,Mirian Mina4,Lavasanifar Afsaneh5,Mokhtari Mojgan6

Affiliation:

1. Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

2. Department of Medical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

3. Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

4. Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

5. Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada

6. Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

Background: The development of biocompatible tumor-targeting delivery systems for anticancer agents is essential for efficacious cancer chemotherapy. Nanoparticles, as drug delivery cargoes for cancer therapy, are rapidly improving to overcome the limitations of conventional chemotherapeutic agents. Heparin–modified nanoparticles are currently being considered as one of the favorable carriers for the delivery of chemotherapeutics to cancer tissues. Objective: This study was aimed at evaluating the in vitro and in vivo antitumor activity of a novel targeted, pH-sensitive, heparin-based polymeric micelle loaded with the poorly water-soluble anticancer drug, docetaxel (DTX). The micelles could overcome the limited water solubility, non-specific distribution, and insufficient drug concentration in tumor tissues. Methods: DTX-loaded folate targeted micelles were prepared and evaluated for physicochemical properties, drug release, in vitro cellular uptake and cytotoxicity in folate receptor-positive and folate receptor-negative cells. Furthermore, the antitumor activity of DTX-loaded micelles was evaluated in the tumor-bearing mice. Some related patents were also studied in this research. Results: The heparin-based targeted micelles exhibited higher in vitro cellular uptake and cytotoxicity against folate receptor over-expressed cells due to the specific receptor-mediated endocytosis. DTX-loaded micelles displayed greater antitumor activity, higher anti-angiogenesis effects, and lower systemic toxicity compared with free DTX in a tumor-induced mice model as confirmed by tumor growth monitoring, immunohistochemical evaluation, and body weight shift. DTX-loaded targeting micelles demonstrated no considerable toxicity on major organs of tumor-bearing mice compared with free DTX. Conclusion: Our results indicated that DTX-loaded multifunctional heparin-based micelles with desirable antitumor activity and low toxicity possess great potential as a targeted drug delivery system in the treatment of cancer.

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmacology (medical),Cancer Research,Drug Discovery,Oncology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3