Negatively-charged Liposome Nanoparticles Can Prevent Dyslipidemia and Atherosclerosis Progression in the Rabbit Model

Author:

Momtazi-Borojeni Amir Abbas1,Abdollahi Elham2,Jaafari Mahmoud R.3,Banach Maciej4,Watts Gerald F.5,Sahebkar Amirhossein6

Affiliation:

1. Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran

2. Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3. Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

4. Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland | Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland

5. Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia

6. Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran | Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran | School of Medicine, The University of Western Australia, Perth, Australia | School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Background and Aim: Negatively charged nanoliposomes have a strong attraction towards plasma lipoprotein particles and can thereby regulate lipid metabolism. Here, the impact of such nanoliposomes on dyslipidaemia and progression of atherosclerosis was investigated in a rabbit model. Methods: Two sets of negatively-charged nanoliposome formulations including [hydrogenated soy phosphatidylcholine (HSPC)/1,2-distearoyl-sn-glycero-3- phosphoglycerol (DSPG)] and [1,2- Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC)/1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPG)/Cholesterol] were evaluated. Rabbits fed a high-cholesterol diet were randomly divided into 3 groups (n=5/group) intravenously administrated with HSPC/DSPG formulation (DSPG group; 100 mmol/kg), DMPC/DMPG formulation (DMPG group; 100 mmol/kg), or the normal saline (control group; 0.9% NaCl) over a 4-week period. The atherosclerotic lesions of the aortic arch wall were studied using haematoxylin and eosin staining. Results: Both DSPG and DMPG nanoliposome formulations showed a nano-sized range in diameter with a negatively-charged surface and a polydispersity index of <0.1. After 4 weeks administration, the nanoliposome formulations decreased triglycerides (-62±3% [DSPG group] and -58±2% [DMPG group]), total cholesterol (-58±9% [DSPG group] and -37±5% [DMPG group]), and lowdensity lipoprotein cholesterol (-64±6% [DSPG group] and -53±10% [DMPG group]) levels, and increased high-density lipoprotein cholesterol (+67±28% [DSPG group] and +35±19% [DMPG group]) levels compared with the controls. The nanoliposomes showed a significant decrease in the severity of atherosclerotic lesions: mean values of the intima to media ratio in DMPG (0.96±0.1 fold) and DSPG (0.54±0.02 fold) groups were found to be significantly lower than that in the control (1.2±0.2 fold) group (p<0.05). Conclusion: Anionic nanoliposomes containing [HSPC/DSPG] and [DMPC/DMPG] correct dyslipidaemia and inhibit the progression of atherosclerosis.

Funder

National Institutes for Medical Research Development

Mashhad University of Medical Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Cardiology and Cardiovascular Medicine,Pharmacology

Reference45 articles.

1. Tabas I.; Williams K.J.; Borén J.; Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007,116(16),1832-1844

2. Borén J.; Chapman M.J.; Krauss R.M.; Packard C.J.; Bentzon J.F.; Binder C.J.; Daemen M.J.; Demer L.L.; Hegele R.A.; Nicholls S.J.; Nordestgaard B.G.; Watts G.F.; Bruckert E.; Fazio S.; Ference B.A.; Graham I.; Horton J.D.; Landmesser U.; Laufs U.; Masana L.; Pasterkamp G.; Raal F.J.; Ray K.K.; Schunkert H.; Taskinen M.R.; van de Sluis B.; Wiklund O.; Tokgozoglu L.; Catapano A.L.; Ginsberg H.N.; Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2020,41(24),2313-2330

3. Ferretti G.; Bacchetti T.; Sahebkar A.; Effect of statin therapy on paraoxonase-1 status: A systematic review and meta-analysis of 25 clinical trials. Prog Lipid Res 2015,60,50-73

4. Reiner Ž.; Hatamipour M.; Banach M.; Pirro M.; Al-Rasadi K.; Jamialahmadi T.; Radenkovic D.; Montecucco F.; Sahebkar A.; Statins and the COVID-19 main protease: in silico evidence on direct interaction. Arch Med Sci 2020,16(3),490-496

5. Sahebkar A.; Serban C.; Ursoniu S.; Mikhailidis D.P.; Undas A.; Lip G.Y.; Bittner V.; Ray K.; Watts G.F.; Hovingh G.K.; Rysz J.; Kastelein J.J.; Banach M.; The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thromb Haemost 2016,115(3),520-532

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3