Molecular Targets for Chalcones in Antileishmanial Drug Discovery

Author:

de Santiago-Silva Kaio Maciel1,da Silva Gomes Gabriel Felix1,Perez Carla Cristina1,da Silva Lima Camilo Henrique2,de Lima Ferreira Bispo Marcelle1

Affiliation:

1. Laboratório de Síntese de Moléculas Medicinais (LaSMMed), Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil

2. Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Abstract: Leishmaniases are infectious diseases caused by flagellated protozoan parasites belonging to the genus Leishmania that infect cells of the mononuclear phagocytic system. These parasites are transmitted to humans by biting an infected female sandfly belonging to the genera Phlebotomus in the Old World and Lutzomyia in the New World. Despite representing a major public health problem, the therapeutic options are old and have several disadvantages. Given this scenario, developing vaccines or drugs for oral administration is necessary. Therefore, integrating computational and experimental strategies into the studies on molecular targets essential for the survival and virulence of the parasite is fundamental in researching and developing new treatments for leishmaniasis. In the effort to develop new vaccines and drugs, molecular docking methods are widely used as they explore the adopted conformations of small molecules within the binding sites of macromolecular targets and estimate the free energy of target-ligand binding. Privileged structures have been widely used as an effective model in medicinal chemistry for drug discovery. Chalcones are a common simple scaffold found in many compounds of natural and synthetic origin, where studies demonstrate the great pharmacological potential in treating leishmaniasis. This review is based on scientific articles published in the last ten years on molecular docking of chalcone derivatives for essential molecular targets of Leishmania. Thus, this review emphasizes how versatile chalcone derivatives can be used in developing new inhibitors of important molecular targets involved in the survival, growth, cell differentiation, and infectivity of the parasites that cause leishmaniasis.

Funder

Coordenadoria de Aperfeiçoamento Pessoal de Nível Superior

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3