Synthesis and Docking Study of Novel 4-Thiazolidinone Derivatives as Anti-Gram-positive and Anti-H. pylori Agents

Author:

Khomami Armin1,Rahimi Mohammadamin1,Tabei Arash1,Saniee Parastoo2,Mahboubi Arash3,Foroumadi Alireza4,Koopaei Nasrin Nassiri1,Almasirad Ali1

Affiliation:

1. Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran

2. Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C, Tehran, Iran

3. Food Safety Research Center, Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4. Department of Medicinal Chemistry, Faculty of Pharmacy and The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background: Bacterial resistance to the available antibiotics is a life threatening issue and researchers are trying to find new drugs to overcome this problem. Amongst the different structural classes, thiazolidinone-4-one, as a new effective pharmacophore against various bacteria, has been introduced. Objective: A new series of 2-(5-(5-nitrothiophene-2-yl)-1,3,4-thiadiazole-2-ylimino)-5-arylidenethiazolidin- 4-one derivatives were designed and synthesized as new antibacterial agents. Method: Target compounds were synthesized during 5 steps and their in vitro antibacterial and anti-H. pylori activities were evaluated. The interaction of the most active derivatives with the probable targets was assessed by Auto Dock 4.2 Program. Results: The results showed that the most potent compounds, 18, 22 and 23, displayed antibacterial activity versus S.aureus, S.epidermidis, B.cereus and B.subtilis (MIC, 1.56-12.5 µg/mL) and none of the derivatives were active on tested Gram-negative bacteria. Compound 12 in all considered doses and compounds 10, and 27 had strong anti-H. pylori activity (inhibition zone >20 mm) in 25 μg disc. Docking studies determined suitable interactions and affinity of potent compounds with bacterial MUR B and H. pylori urease enzymes. Conclusion: According to the results most of the derivatives are effective anti-bacterial agents and docking evaluation confirmed their possible mechanisms of actions as MURB and Urease inhibitors.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3