TiO2-NPs Toxicity and Safety: An Update of the Findings Published over the Last Six Years

Author:

Grande Fedora1ORCID,Tucci Paola1ORCID,Bevacqua Emilia1,Occhiuzzi Maria Antonietta1ORCID

Affiliation:

1. Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy

Abstract

Abstract: Nanotechnology has greatly impacted our daily life and has certainly yielded many promising benefits. Titanium dioxide nanoparticles (TiO2-NPs) are among those produced on a large industrial scale that have found many practical applications in industry and daily life. Due to their presence in products such as food, cosmetics, sunscreens, medications, paints or textiles, contact with TiO2-NPs in our daily life is inevitable. The small size, together with the corresponding large specific surface area, make nanoparticles able to penetrate through cellular barriers and reach various parts of the body through different routes of exposure, including inhalation, injection, dermal penetration, and gastrointestinal tract absorption. Furthermore, after long-term exposure, the TiO2-NPs could accumulate in tissues leading to chronic diseases. This raises serious doubts about their potentially harmful effects on human health. In the past, TiO2-NPs have been considered inert, however, many in vitro studies have shown that they were cyto- and genotoxic, leading to the production of reactive oxygen species (ROS) and to the activation of signaling pathways involved in inflammation and cell death. Several in vivo studies have also demonstrated that TiO2-NPs, once in the bloodstream, could reach and accumulate in important organs causing toxic effects. Very recently, the International Agency for Research on Cancer (IARC) has classified these nanoparticles as possibly carcinogenic to humans. In this survey, we summarize the latest advances in acknowledging the toxicity and safety of TiO2-NPs. Since the literature is often controversial, further studies are still needed to define the risk/benefit ratio of using these nanoparticles. Overall, the data herein reported are critical for assessing human risk after exposure to TiO2-NPs.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmacology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3