Neutralizing epitope of the Fusion Protein of Respiratory Syncytial Virus Embedded in the HA Molecule of LAIV Virus is not Sufficient to Prevent RS Virus Pulmonary Replication but Ameliorates Lung Pathology following RSV Infection in Mice

Author:

Kotomina Tatiana,Isakova-Sivak Irina,Stepanova Ekaterina,Mezhenskaya Daria,Matyushenko Victoria,Prokopenko Polina,Sivak Konstantin,Kiseleva Irina,Rudenko Larisa

Abstract

Aims: To develop experimental bivalent vaccines against influenza and RSV using a cold-adapted LAIV backbone. Background: Respiratory syncytial virus (RSV) is a causative agent of bronchiolitis and pneumonia in young children, elderly and immunocompromised adults. No vaccine against RSV has been licensed to date for various reasons. One of the promising platforms for designing RSV vaccine is the use of live attenuated influenza vaccine (LAIV) viruses to deliver RSV epitopes to the respiratory mucosa. Objective: To generate recombinant LAIV viruses encoding a neutralizing epitope of the RSV fusion protein and assess their protective potential against both influenza and RSV infections in a mouse model. Methods: Reverse genetics methods were used to rescue recombinant LAIV+HA/RSV viruses expressing chimeric hemagglutinins encoding the RSV-F epitope at its N-terminus using two different flexible linkers. BALB/c mice were intranasally immunized with two doses of the recombinant viruses and then challenged with the influenza virus or RSV. The LAIV viral vector and formalin-inactivated RSV (FI-RSV) were included as control vaccines. Protection was assessed by the reduction of virus pulmonary titers. In addition, RSV-induced lung pathology was evaluated by histopathology studies. Results: Two rescued chimeric LAIV+HA/RSV viruses were identical to the LAIV vector in terms of replication capacity in vitro and in vivo. The RSV-F neutralizing epitope was successfully expressed only if inserted into the HA molecule via G-linker, but not A-linker. Both chimeric viruses induced high influenza-specific antibody levels and fully protected mice against a lethal influenza challenge virus. However, they induced weak anti-RSV antibody responses which did not prevent RS virus replication upon challenge, and only LAIV-HA+G-RSV variant protected mice against RSV-induced lung pathology. Conclusion: Although the designed LAIV-RSV chimeric viruses were unable to neutralize the RS virus pulmonary replication, the LAIV-HA+G-RSV reduced RSV-induced lung pathology and can be considered a promising bivalent vaccine against influenza and RSV infections and warrants its further development.

Publisher

Bentham Science Publishers Ltd.

Subject

General Immunology and Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3