The TP53 Gene and COVID-19 Virus: A Correlation Analysis

Author:

Anand C. Lakshmi1ORCID,Namboori P.K. Krishnan1ORCID

Affiliation:

1. Computational Chemistry Group (CCG), Amrita Molecular Modeling and Synthesis Research Lab, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India

Abstract

Aim: This study aimed to discover the most effective anti-cancer medicine for cancer patients infected with SARS-CoV-2. Background: The correlation between TP53 and SARS-CoV-2 was examined using biomolecular networking analysis. Objective: Cancer patients with TP53 gene mutations are more likely to be infected with the SARSCoV- 2 virus since it is the most frequently mutated tumor suppressor gene in human cancer. The main goal of this study is to discover the most effective and efficient anti-cancer therapy for patients with SARS-CoV-2 infection. Materials and Methods: Topp gene analysis was used to prioritize candidate genes based on molecular function, biological process, and pathway analysis. Biomolecular networking was carried out using Cytoscape 2.8.2. The protein-protein interaction network was used to identify the functionally associated proteins. The protein-drug interaction network was used to observe the molecular therapeutic efficiency of drugs. The network was further analyzed using CytoHubba to find the hub nodes. The molecular docking was used to study the protein-ligand interaction, and the protein-ligand complex was further evaluated through molecular dynamic simulation to determine its stability. Results: Functionally relevant genes were prioritized through Toppgene analysis. Using Cytohabba, it was found that the genes UBE2N, BRCA1, BARD1, TP53, and DPP4 had a high degree and centrality score. The drugs 5-fluorouracil, Methotrexate, Temozolomide, Favipiravir, and Levofloxacin have a substantial association with the hub protein, according to protein-drug interaction analysis. Finally, a docking study revealed that 5-fluorouracil has the highest connection value and stability compared to Methotrexate, Favipiravir, and Levofloxacin. Conclusion: The biomolecular networking study was used to discover the link between TP53 and SARSCoV- 2, and it was found that 5-fluorouracil had a higher affinity for binding to TP53 and its related genes, such as UBE2N, BRCA1, RARD1, and SARS-CoV-2 specific DPP4. For cancer patients with TP53 gene mutations and Covid-19 infection, this treatment is determined to be the most effective.

Publisher

Bentham Science Publishers Ltd.

Subject

Genetics (clinical),Pharmacology,Genetics,Molecular Biology,Molecular Medicine

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3