Cinacalcet HCl-Loaded PLGA Nanoparticles Using the Porous Carrier

Author:

Shree Dipthi1ORCID,Patra Chinam N.1,Ghose Debashish1,Jena Goutam K.1,Sahoo Biswa M.2,Panigrahi Kahnu C.1,Sruti Jammula1

Affiliation:

1. Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India

2. Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur-760010, Odisha, India

Abstract

Background: Cinacalcet HCl is a calcimimetic, BCS class IV drug with low oral bioavailability. Polymeric nanoparticles are widely used as biomaterials owing to their biocompatibility, biodegradability, varied structures, low toxicity, and simple and easy formulation process. Objective: The aim of the study was to enhance the oral bioavailability of poorly water-soluble drug, i.e., cinacalcet HCl, by using a suitable particulate nanocarrier system, i.e., polymeric nanoparticles. Methods: Biodegradable Cinacalcet HCl (CH)-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles were prepared by nanoprecipitation method using Poloxamer-188 as a stabilizer. The experimental parameters, like polymer concentration, stabilizer concentration, temperature, and RPM speed, were optimized. An optimized polymeric nanoparticle formulation PNP (F8) was solidified by adsorption on the porous carrier sylysia 350. Results: PNP (F8) exhibited a particle size of 155 nm with low PDI (0.231) and high zeta potential (- 21.3 mV). In vitro diffusion study revealed sustained release of CH for 24 h for both PNP (F8) and solidified PNP (F8). Pharmacokinetics after oral administration of PNP (F8) and solidified PNP (F8) exhibited a 5-fold increase in bioavailability. Thus, both PNP (F8) and solidified PNP (F8) showed significant improvement in oral bioavailability. Conclusion: Adsorption of polymeric nanoparticles onto porous carriers like sylysia 350 can be considered as a promising approach for long-term stability.

Publisher

Bentham Science Publishers Ltd.

Subject

Materials Science (miscellaneous),Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3