Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/ Graphene Nanocomposite

Author:

Melak Fekadu1ORCID,Bogale Bekan2,Asere Tsegaye Girma2,Yai Tilahun2

Affiliation:

1. Department of Environmental Health, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia

2. Department of Chemistry, College of Natural Sciences, Jimma University, Jimma, Ethiopia

Abstract

Aims: The aim of this study is to evaluate the photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been added to make nanocomposites with cuprous oxides. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of Methylene Blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticle (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of phtocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as highperformance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Publisher

Bentham Science Publishers Ltd.

Subject

Materials Science (miscellaneous),Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3