A Review of the Current Progress of Metal-organic Framework and Covalent Organic Framework Nanocomposite Membrane in O2/N2 Gas Separation

Author:

Chong Kok Chung12,Ho Pui San1,Lai Soon Onn12,Chong Woon Chan12,Shuit Siew Hoong12

Affiliation:

1. Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia

2. Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

Abstract

Background: The use of membrane technology has developed rapidly since the proposal of the Robeson upper bound. Nevertheless, the researchers proposed various methods and techniques to enhance the permeability and selectivity to achieve a breakthrough of the upper bound. Method: Metal-organic framework (MOF) and covalent organic framework (COF) were the recentlyinterest- arising materials enhancing gas separation performance. In this study, recent advances in MOF and COF were comprehensively discussed in terms of the materials, properties and synthesis method. Later, the MOF and COF nanocomposite mixed matrix membrane development was discussed to evaluate the recent improvement of these membranes used in the O2/N2 gas separation performance. This work intends to overview the recent progress and development of the metal-organic framework, covalent organic frameworks and the used nanocomposite membrane in O2/N2 gas separation. Result: This topic review was carried out from a thorough literature review of metal-organic frameworks, covalent organic frameworks and the used nanocomposite membrane in O2/N2 gas separation. Additionally, the recent achievement of the O2/N2 gas separation by nanocomposite membrane in term of permeability and selectivity are also discussed. Conclusion: Findings from this study suggested that MOF and COF-based nanocomposite membranes could be used in either the O2/N2 and N2/O2 gas separation process with the possibility of being involved in the gas production sector.

Publisher

Bentham Science Publishers Ltd.

Subject

Materials Science (miscellaneous),Biomaterials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3