Hydrophobic Modification of Copper Nanospheres for Incorporation into Poloxamer Micelles, Aggregated Micellar Nanocages and Supramolecular Assemblies

Author:

Xu Yunlong1,Melkis Kaspars1,Sia Chinn T.1,Sarker Dipak K.1

Affiliation:

1. Interfacial Nanotechnology Group, School of Pharmacy and Biomolecular Sciences, The University of Brighton, Moulsecoomb Science Campus, Lewes Road, Brighton, BN2 4GJ, United Kingdom

Abstract

Background: Polymer nanogels are increasingly used for the encapsulation of nano-solids and quantum dots such as in advanced forms of drug and therapeutic isotope delivery. Objective: Unlike ex vivo application of systems in vivo application and internalization are likely to suffer from aspects of failure to ensure safety and biocompatibility. Biocompatible hydrophilic poloxamer (Pluronic F108 and F68) micelles were studied by light scattering and tensiometry. Methods: The micelles of nano-gels are synthetic heteropolymer aggregates, which are used to encapsulate drugs but in this study chemically-modified (hydrophobized) copper nano-spheres, for the purposes of demonstration for further application and medical use. Copper benzoate nano-particles (CuBzNPs) were produced by maceration and subsequently stabilized in Pluronic F108 solution was added at different concentrations. Results: The resulting particle size increase was studied by dynamic light scattering. Moderate size increase was observed at low Pluronic F108 concentrations, which indicated successful coating, but at higher F108 concentrations large size agglomerates formed. Coated copper benzoate nano-particles (CuBzNPs) were fabricated as a proof-of-principle and as a substitute for bare metal nano-particles (MNs), which were not successfully entrained in the poloxamer nano-gel. As part of the synthesis copper benzoate (CuBz) beads and their characterization through contact angle measurements were performed. Conclusion: Micelles sizes of 4 nm for F68 Pluronic at equilibrium surface tensions of 36 mNm-1 were captured in weak, 1.25 to 2.0 Pas pseudoplastic gels fabricated from hydroxypropylmethylcellulose (HPMC).

Funder

Jiangxi Association for Science and Technology and International Visitor and Exchange Department of the Jiangxi Provincial Party Organization

Publisher

Bentham Science Publishers Ltd.

Subject

Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3