Affiliation:
1. Department of Physics, Faculty of science, Materials Science Lab, Beirut Arab University, Debbieh, Lebanon
2. Department of Physics, Faculty of science, Lebanese University, Beirut, Lebanon
Abstract
Background:
The properties of spinel ferrites are known to be dependent on many various
factors and mainly on the cations distribution among the tetrahedral and octahedral sites. Therefore, they
are sensitive to the presence of doping cations, the type and the amount of these cations. Many researchers
have focused on investigating the effect of doping on spinel ferrites nanoparticles with various types
of dopants. Among the dopants, transition metal (TM) ions have shown significant effects and changes
on the structural, optical, electric and magnetic properties of spinel ferrites nanoparticles.
Objective:
The goal of this work is to investigate the effect of the TM ions Mo5+ on the several properties
of manganese ferrites nanoparticles.
Methods:
Mo-doped manganese ferrites nanoparticles with the general formula MnFe2-xMoxO4 (0≤x≤
0.1) were prepared by co-precipitation technique using two different methods, depending on the molarity
of NaOH and the annealing temperatures. The characterization of the prepared samples was
conducted by X-ray powder diffraction (XRD), Energy-Dispersive X-ray (EDX), Transmission Electron
Microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy and Fourier Transform
Infrared (FTIR) spectroscopy in order to investigate the effect of Mo-doping on the structure, crystallite
size, morphology, energy gap and functional groups of MnFe2O4 nanoparticles. Vibrating sample
magnetometer (VSM) was used to study the magnetic hysteresis of the samples.
Results:
The XRD patterns show the segregation of MnFe2O4 phase into α-Fe2O3 and Mn2O3 for samples
prepared at 4 M NaOH and annealing temperature of 873 K. Whereas, samples prepared at 2 M NaOH
without annealing process, obtained a single phase of MnFe2O4. The Eg of both samples decreases with the
increase in Mo-doping. FTIR confirms the presence of Fe-O bands corresponding to α-Fe2O3 for annealed
samples, and the metal-O bands corresponding to octahedral and tetrahedral sites in non-annealed samples.
Magnetic measurements show that annealed samples are antiferromagnetic whereas ferromagnetic behavior
is observed in non-annealed samples. Dielectric measurements, for both samples, indicate that the dielectric
parameters are strongly dependent on both Mo-concentrations and temperatures.
Conclusion:
In order to get a single phase of MnFe2O4 nanoparticles, thermal treatment at high temperature
and high molarity of NaOH are not recommended. Mo-doping has significant influences on
the optical, magnetic and dielectric properties and therefore future studies on the Mo-doping with different
and new doping percentages are recommended.
Publisher
Bentham Science Publishers Ltd.
Subject
Materials Science (miscellaneous),Biomaterials,Ceramics and Composites
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献