Physical and Dielectric Properties of MnFe2O4 Doped by Mo

Author:

Al-Mokdad F.1,Hassan R. Sayed2,Awad R.1

Affiliation:

1. Department of Physics, Faculty of science, Materials Science Lab, Beirut Arab University, Debbieh, Lebanon

2. Department of Physics, Faculty of science, Lebanese University, Beirut, Lebanon

Abstract

Background: The properties of spinel ferrites are known to be dependent on many various factors and mainly on the cations distribution among the tetrahedral and octahedral sites. Therefore, they are sensitive to the presence of doping cations, the type and the amount of these cations. Many researchers have focused on investigating the effect of doping on spinel ferrites nanoparticles with various types of dopants. Among the dopants, transition metal (TM) ions have shown significant effects and changes on the structural, optical, electric and magnetic properties of spinel ferrites nanoparticles. Objective: The goal of this work is to investigate the effect of the TM ions Mo5+ on the several properties of manganese ferrites nanoparticles. Methods: Mo-doped manganese ferrites nanoparticles with the general formula MnFe2-xMoxO4 (0≤x≤ 0.1) were prepared by co-precipitation technique using two different methods, depending on the molarity of NaOH and the annealing temperatures. The characterization of the prepared samples was conducted by X-ray powder diffraction (XRD), Energy-Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-Vis) absorption spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy in order to investigate the effect of Mo-doping on the structure, crystallite size, morphology, energy gap and functional groups of MnFe2O4 nanoparticles. Vibrating sample magnetometer (VSM) was used to study the magnetic hysteresis of the samples. Results: The XRD patterns show the segregation of MnFe2O4 phase into α-Fe2O3 and Mn2O3 for samples prepared at 4 M NaOH and annealing temperature of 873 K. Whereas, samples prepared at 2 M NaOH without annealing process, obtained a single phase of MnFe2O4. The Eg of both samples decreases with the increase in Mo-doping. FTIR confirms the presence of Fe-O bands corresponding to α-Fe2O3 for annealed samples, and the metal-O bands corresponding to octahedral and tetrahedral sites in non-annealed samples. Magnetic measurements show that annealed samples are antiferromagnetic whereas ferromagnetic behavior is observed in non-annealed samples. Dielectric measurements, for both samples, indicate that the dielectric parameters are strongly dependent on both Mo-concentrations and temperatures. Conclusion: In order to get a single phase of MnFe2O4 nanoparticles, thermal treatment at high temperature and high molarity of NaOH are not recommended. Mo-doping has significant influences on the optical, magnetic and dielectric properties and therefore future studies on the Mo-doping with different and new doping percentages are recommended.

Publisher

Bentham Science Publishers Ltd.

Subject

Materials Science (miscellaneous),Biomaterials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3