Influence of Eco-friendly Pretreatment of Cellulose Acetate Fabric with Laccase Enzyme on the Textile Properties, Dye Adsorption Isotherms, and Thermodynamic Parameters

Author:

Zolriasatein Ali Akbar1ORCID

Affiliation:

1. Department of Textile Engineering, College of Technical and Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

Abstract

INTRODUCTION: Deacetylation of cellulose acetate restores hydroxyl groups on the surface of fibers and improves hydrophilicity. From an environmental point of view, the conventional deacetylation process involves alkalinity and large effluent volume. The goal of this work is to introduce a new eco-friendly bio-treatment process. METHOD: In this study, cellulose acetate fabrics were bio-treated with laccase enzyme. Then, the untreated and bio-treated fabrics were dyed with direct and dispersed dyes. Laccase pretreatment improved color strength (16%) and crocking durability. After bio-treatment, the bending rigidity decreased for the warp (17.8) and weft (10.8) directions. The Freundlich model was the best model to describe the adsorption of direct dye onto the untreated fabric. In contrast, the Langmuir model better described the adsorption behavior of bio-treated fabric. RESULT: Nernst model was suitable for dispersed dye adsorption. The partition coefficient was increased after laccase treatment. Thermodynamic analysis showed that the dye sorption was endothermic and nonspontaneous. CONCLUSION: It was also found that bio-treated fabrics require less external energy. All performed experiments approved the efficiency of the deacetylation process, which led to an improvement in dyeing properties.

Publisher

Bentham Science Publishers Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3