Preparation of Zinc Oxide Nanoparticles Assisted by Okra Mucilage and Evaluation of its Biological Activities

Author:

Marzban Abdolrazagh1,Shakib Pegah1,Mirzaei Seyedeh Zahra2,Lashgarian Hamed Esmaeil3,Saki Reza4,Goudarzi Gholamreza1,Alsallameh Sarah5,Cheraghipour Kourosh1

Affiliation:

1. Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran

2. Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences (KUMS), Kermanshah, Iran

3. Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran

4. Department of Microbiology, Kermanshah University of Medical Sciences, Kermanshah, Iran

5. Department of Medical Laboratories Techniques, College of Health and Medical Techniques, Gilgamesh Ahliya University Gau, Baghdad, Iraq

Abstract

Background: In this study, zinc oxide nanoparticles (ZnO-NPs) were biologically synthesized from Abelmoschus esculentus L. (Okra) mucilage fraction (OM). Methods: Analytical techniques were employed to study the formation and properties of OM-ZnO NPs, including their morphology, shape, size distribution, and surface charges. Additionally, OM-ZnO NPs were assessed for their antimicrobial, antioxidant, and cytotoxic properties. Results: UV-visible spectroscopy confirmed the formation of OM-ZnO NPs, evident by the appearance of an SPR peak at 368.8 nm. The FTIR spectroscopy demonstrated that OM functional groups contribute to the formation and stability of the NPs. Micrographs from TEM and SEM showed that OM-ZnO NPs ranged from 15-40 nm in diameter, whereas hydrodynamic diameter and surface charge values obtained from Zeta and DLS were 72.8 nm and 14.6 mv, respectively. XRD analysis indicated the OM-ZnO NPs were crystalline with a wurtzite structure and a crystallite size of 27.3 nm, while EDX revealed a zinc: oxygen ratio of 67.5:34. Further, the OM-ZnO NPs demonstrated significant antimicrobial activity in response to different types of bacteria. In the antioxidant assay, the OM-ZnO NPs scavenged DPPH with 68.6 % of the efficiency of ascorbic acid (100 %). Conclusion: The present study demonstrated the cytotoxic efficacy of MO-ZnO NPs against MCF7 cells with an IC50 of 43.99 µg/ml. Overall, the green synthesis of ZnO NPs by OM was successful for many biological applications, such as antimicrobial, antioxidant, and anticancer. Moreover, OM-ZnO NPs can be applied as a biologically-derived nanotherapeutic agent.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3