Exploration of Novel PDEδ Inhibitor Based on Pharmacophore and Molecular Docking against KRAS Mutant in Colorectal Cancer

Author:

Mouhcine Mohammed1,Kadil Youness1,Rahmoune Imane1,Filali Houda1

Affiliation:

1. Laboratory of Pharmacology-Toxicology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University of Casablanca, Casablanca, Morocco

Abstract

Aim: The prenyl-binding protein, phosphodiesterase-δ (PDEδ), is essential for the localization of prenylated KRas to the plasma membrane for its signaling in cancer. Introduction: The general objective of this work was to develop virtually new potential inhibitors of the PDEδ protein that prevent Ras enrichment at the plasma membrane. Methods: All computational molecular modeling studies were performed by Molecular Operating Environment (MOE). In this study, sixteen crystal structures of PDEδ in complex with fifteen different fragment inhibitors were used in the protein-ligand interaction fingerprints (PLIF) study to identify the chemical features responsible for the inhibition of the PDEδ protein. Based on these chemical characteristics, a pharmacophore with representative characteristics was obtained for screening the BindingDB database. Compounds that matched the pharmacophore model were filtered by the Lipinski filter. The ADMET properties of the compounds that passed the Lipinski filter were predicted by the Swiss ADME webserver and by the ProTox-II-Prediction of Toxicity of Chemicals web server. The selected compounds were subjected to a molecular docking study. Results: In the PLIF study, it was shown that the fifteen inhibitors formed interactions with residues Met20, Trp32, Ile53, Cys56, Lys57, Arg61, Gln78, Val80, Glu88, Ile109, Ala11, Met117, Met118, Ile129, Thr131, and Tyr149 of the prenyl-binding pocket of PDEδ. Based on these chemical features, a pharmacophore with representative characteristics was composed of three bond acceptors, two hydrophobic elements, and one hydrogen bond donor. When the pharmacophore model was used in the virtual screening of the Binding DB database, 2532 compounds were selected. Then, the 2532 compounds were screened by the Lipinski rule filter. Among the 2532 compounds, two compounds met the Lipinski's rule. Subsequently, a comparison of the ADMET properties and the drug properties of the two compounds was performed. Finally, compound 2 was selected for molecular docking analysis and as a potential inhibitor against PDEδ. Conclusion: The hit found by the combination of structure-based pharmacophore generation, pharmacophore- based virtual screening, and molecular docking showed interaction with key amino acids in the hydrophobic pocket of PDEδ, leading to the discovery of a novel scaffold as a potential inhibitor of PDEδ.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3