Affiliation:
1. Institut Universitari de Ciencia Molecular, Universitat de Valencia, Edifici d’Instituts de Paterna, P. O. Box 22085, E-46071 Valencia, Spain
2. Departamento de Ciencias Experimentales y Matematicas, Facultad de Veterinaria y Ciencias Experimentales, Universidad Catolica de Valencia San Vicente Martir, Guillem de Castro-94, E-46001 Valencia, Spain
Abstract
Background:
Some lactones prevent protein Myb-dependent gene expression.
Objective:
The object is to calculate inhibitors of Myb-brought genetic manifestation.
Methods:
Linear quantitative structure–potency relations result expanded, among sesquiterpene lactones
of a variety of macrocycles (pseudoguaianolides, guaianolides, eudesmanolides and germacranolides), to
establish which part of the molecule constitutes their pharmacophore, and predict their inhibitory potency
on Myb-reliant genetic manifestation, which may result helpful as leads for antileukaemic therapies with a
new mechanism of action.
Results:
Several count indices are connected with structure–activity. The α-methylene-γ-lactone ML functional
groups increase, whereas OH groups decrease the activity. Hydrophobicity provides to increase cell
toxicity. Four counts (ML, number of α, β-unsaturated CO groups, etc.), connected with the number of
oxygens, present a positive association, owing to the partial negative charge of oxygen. The s-trans-strans-
germacranolide molecule presents maximal potency. The OH groups decrease the potency owing to
the positive charge of hydrogen. The numbers of π-systems and atoms, and polarizability increase the potency.
Following least squares, every standard error of the coefficients is satisfactory in every expression.
The most predictive linear expressions for lactones, pseudoguaianolides and germacranolides are corroborated
by leave-group-out cross-validation. Quadratic equations do not make the correlation better.
Conclusion:
Likely action mechanisms for lactones are argued with a diversity of functional groups in the
lactone annulus, including artemisinin with its uncommon macrocycle characteristic, 1,2,4-trioxane cycle
(pharmacophoric peroxide linkage -O1-O2- in endoperoxide ring), which results in the foundation for its
sole antimalarial potency.
Funder
Generalitat Valenciana
Universidad Católica de Valencia San Vicente Mártir
Publisher
Bentham Science Publishers Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献