Mini-Review: “Ball-Type Phthalocyanines”: Similarities and Differences from Mono Phthalocyanines

Author:

Göl Emre Y.1,Karabudak Engin1

Affiliation:

1. Department of Chemistry, İzmir Institute of Technology, Izmir, Turkey

Abstract

Ball-type phthalocyanines are recently synthesized binuclear derivatives of the widely known phthalocyanine molecule. In the ball-type Pc molecule, two cofacially arranged Pc rings have four bridged substituents on the peripheral positions of benzenes. Due to their cofacially arranged phthalocyanine rings and, strong intramolecular and intermolecular interactions, ball-type phthalocyanines have different properties than their parent molecule and these structures have many potential application areas. This review describes three different synthesis methods of ball-type phthalocyanines; synthesis in the solvent, synthesis in solid, and synthesis under microwave irradiation. The synthesis that occurs in the shortest time with the highest yield is the synthesis in the solid phase. General differences between a ball-type phthalocyanine and a monophthalocyanine, such as differences in electronic spectra and effects of cofacial arrangement and central metal atoms, are also discussed. The shape of the Q-bands indicates the differences in electronic spectra. In ball-type Pcs, the Q-bands are broad and have poor resolution. Some potential applications, such as gas sensors, NLO devices, potential usage in photodynamic therapy and artificial photosynthesis of ball-type phthalocyanines are also mentioned. Ball-type Pcs can be used as a sensor for gases such as; CO2, CO, SO2, VOC. A novel water-soluble ball-type Pc may have potential application in PDT. Finally, we consider future prospects of these molecules.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3