Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials

Author:

Araya-Sibaja Andrea Mariela1,Fandaruff Cinira2,Wilhelm Krissia3,Vega-Baudrit José Roberto1,Guillén-Girón Teodolito4,Navarro-Hoyos Mirtha3

Affiliation:

1. Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, 1174-1200, San Jose, Costa Rica

2. Independent Researcher, Sao Paulo, Brazil

3. Escuela de Quimica, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica

4. Escuela de Ciencia e Ingenieria de los Materiales, Tecnologico de Costa Rica, Cartago 159-7050, Costa Rica

Abstract

Primarily composed of organic molecules, pharmaceutical materials, including drugs and excipients, frequently exhibit physicochemical properties that can affect the formulation, manufacturing and packing processes as well as product performance and safety. In recent years, researchers have intensively developed Crystal Engineering (CE) in an effort to reinvent bioactive molecules with well-known, approved pharmacological effects. In general, CE aims to improve the physicochemical properties without affecting their intrinsic characteristics or compromising their stability. CE involves the molecular recognition of non-covalent interactions, in which organic materials are responsible for the regular arrangement of molecules into crystal lattices. Modern CE, encompasses all manipulations that result in the alteration of crystal packing as well as methods that disrupt crystal lattices or reduce the size of crystals, or a combination of them. Nowadays, cocrystallisation has been the most explored strategy to improve solubility, dissolution rate and bioavailability of Active Pharmaceutical Ingredients (API). However, its combinatorial nature involving two or more small organic molecules, and the use of diverse crystallisation processes increase the possible outcomes. As a result, numerous organic materials can be obtained as well as several physicochemical and mechanical properties can be improved. Therefore, this review will focus on novel organic solids obtained when CE is applied including crystalline and amorphous, single and multicomponent as well as nanosized ones, that have contributed to improving not only solubility, dissolution rate, bioavailability permeability but also, chemical and physical stability and mechanical properties.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3