Affiliation:
1. Nanotechnology and Catalysis Research Center, Institute of Postgraduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
Abstract
:
A variety of processes were reported for efficient removing of heavy metal from
wastewater, including but not limited to ion exchange, reverse osmosis, membrane filtration, flotation,
coagulation, chemical precipitation, solvent extraction, electrochemical treatments, evaporation,
oxidation, adsorption, and biosorption. Among the aforementioned techniques, adsorption/ion exchange
has been known as a most important method for removing heavy metal ions and organic pollutants
due to great removal performance, simple and easy process, cost-effectiveness and the considerable
choice of adsorbent materials.
:
Nanotechnology and its applications have been developed in most branches of science and technology.
Extensive studies have been conducted to remove heavy metal ions from wastewater by preparation
and applications of various nanomaterials. Nanomaterials offer advantages in comparison to other
materials including an extremely high specific surface area, low-temperature modification, short
intraparticle diffusion distance, numerous associated sorption sites, tunable surface chemistry, and
pore size. In order to evaluate an adsorbent, two key parameters are: the adsorption capacity and the
desorption property. The adsorption parameters including the absorbent loading, pH and temperature,
concentration of heavy metal ion, ionic strength, and competition among metal ions are often studied
and optimized.
:
Several reviews have been published on the application of Graphene (G), Graphene Oxide (GO) in
water treatment. In this minireview, we attempted to summarize the recent research advances in water
treatment and remediation process by graphene-based materials and provide intensive knowledge
of the removal of pollutants in batch and flow systems. Finally, future applicability perspectives are
offered to encourage more interesting developments in this promising field. This minireview does not
include patent literature.
Publisher
Bentham Science Publishers Ltd.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献