Removal of Various Pollutants from Wastewater Using Plasma-Modified Lignocellulose-Derived as a Low-Cost Adsorbent: An Overview

Author:

Acayanka Elie1,Tarkwa Jean-Baptiste2,Takam Brice1,Abia Daouda3,Serge Nzali4,Kamgang Georges Y.1,Laminsi Samuel1

Affiliation:

1. Laboratoire de Chimie Physique et Analytique Appliquee, Departement de Chimie Inorganique, Universite de Yaounde I, P.O. Box: 812 Yaounde, Cameroon

2. School of Geology and Mining Engineering, University of Ngaoundere, P.O. Box: 454, Ngaoundere, Cameroon

3. Departement de Chimie, Universite de Ngaoundere, B.P. 454, Ngaoundere, Cameroon

4. School of Wood, Water and Natural Resources, Faculty of Agronomy and Agricultural Sciences, University of Dschang (Ebolowa Campus), P.O. Box 786, Ebolowa, Cameroon

Abstract

In their search for an alternative to commercial adsorbents, much research is turned to the local biomass-based materials such as agricultural residues and assimilated derivatives. However, natural biomass due to its low specific surface area must first undergo several pre-treatments. Among the newly emerging electric techniques for environmental applications, those who operate at atmospheric pressure (Non-thermal plasma) have recently found many breakthrough applications arising from their easy use with no extra additional reagents and their high reactivity. The Non-thermal plasma treatment of biomass is one of the promising developed approaches mainly due to significant effects including the formation of micro and macrospores, the increase of surface roughness, and surface functionalization. The most used plasma is non-thermal, so as not to denature the biomass, likewise the hot plasma can burn and/or destroy high contains carbon biomaterials. Especially, the gliding arc plasma obtained using moisten air as feeding gas, which is known to induce acidifying and oxidizing effects in an aqueous target. The primary species HO• radicals [E° (HO•/H2O) = 2.85 V/SHE] mainly formed in the arc will be with the dimer H2O2 [E°(H2O2/H2O) = 1.76 V/SHE] the determining agents for the chemical reactions induced. Exposure of a target to this kind of environment is likely to promote great surface transformations. This approach has some advantages: (i) the merit of not using commercial chemical reagents, the reactive species being in situ generated; (ii) the risks related to the manipulation of the products, the plasma reactor is robust and can be modulated to treat large quantity; (iii) the efficiency of the bi-functionality of the plasma (acidifier and oxidative). In this review, we will highlight the main changes induced by exposure of biomass to plasma treatment and also make a comparative study between chemically and plasma-activated materials in the removal of various pollutants from aqueous solution; and finally, we summarize the findings in the existing literature.

Funder

International Foundation for Sciences

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3