C-methylation of Organic Substrates: A Comprehensive Overview; Methanol as a Methylating Agent: A Case of Catalysis Versatility (Part III)#

Author:

Moulay Saad1ORCID

Affiliation:

1. Laboratoire de Chimie-Physique Moléculaire et Macromoléculaire, Département de Génie des Procédés, Faculté de Technologie, Université Saâd Dahlab de Blida, B.P. 270, Route de Soumâa, 09000, Blida, Algeria

Abstract

Abstract: The present account surveys the results of a myriad of works on the C-methylation of organic substrates with methanol as an eco-friendly methylating agent. The innumerable reports on this issue reveal the widespread use of a set of solid catalysts such as molecular sieves, zeolites, metal phosphates, metal oxides and transition metal complexes to accomplish such methylation. One related facet was the impact of the numbers of Brønstëd acid sites, Lewis acid sites, and Lewis base sites present in solid catalysts, such as zeolites, their ratios, and strengths that affect the distribution of the methylation products and their selectivities. Moreover, specific surface area and porosity of some solid catalysts, such as zeolites, play additional roles in the overall reaction. Not only do these catalyst properties influence the methylation outcome, the temperature, space velocity (WHSV, LHSV, GSHV), weight of catalyst per reactant flow rate (W/F), time of stream (TOS), and methanol/ substrate molar ratio also do. The treated substrates herein discussed were aromatic hydrocarbons (benzene, biphenyls, naphthalenes, toluene, xylenes), alkenes, phenolics (phenol, cresols, anisole), Nheteroarenes, carbonyls, alcohols, and nitriles. Methylation of benzene affords not only toluene as the main product but also polymethylated benzenes (xylenes, pseudocumene, hexamethylenebenzene, and also ethylbenzene as a side-chain product). Furthermore, toluene is sensitive to the reaction conditions, giving rise to ring methylation and to side-chain one (ethylbenzene and styrene), besides the formation of benzene as a disproportionation product. A number of results from the methylation of phenolic compounds bear witness to the interest of different investigators in this special research. With respect to these phenolics, concurrent O-methylation inevitably parallels the C-methylation, and the selectivity of the latter one remains dependent on the above-cited factors; ortho-cresol and 2,6-xylenol have been the main C-ring methylated phenols. Methylation of olefins with methanol over solid catalysts, leading to higher olefins, is of great interest. The chemistry involved in the methylation of N-heteroarenes, such as pyridines, indoles, and pyrroles, is significant. Application of the methylation protocols, using methanol as a reagent and transition of metal complexes as catalysts to ketones, esters, aldehydes, nitriles, and alcohols, ends up with some important molecules, such as acrylonitrile (a monomer) and isobutanol (a biofuel).

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3