2,4-Dioxochroman Moiety Linked to 1,2,3-triazole Derivatives as Novel α-glucosidase Inhibitors: Synthesis, In vitro Biological Evaluation, and Docking Study

Author:

Mollazadeh Marjan1,Mohammadi-Khanaposhtani Maryam2,Valizadeh Yousef3,Zonouzi Afsaneh1,Faramarzi Mohammad Ali4,Hariri Parsa4,Biglar Mahmood3,Larijani Bagher3,Hamedifar Haleh5,Mahdavi Mohammad3ORCID,Sepehri Nima6

Affiliation:

1. School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2. Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

3. Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

4. Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

5. CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran

6. Nano Alvand Company, Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, 1439955991, Iran

Abstract

In this study, a novel series of 2,4-dioxochroman-1,2,3-triazole hybrids 8a-l was synthesized by click reaction. These compounds were screened against α-glucosidase through in vitro and in silico evaluations. All the synthesized hybrids exhibited excellent α-glucosidase inhibition in comparison to standard drug acarbose. Representatively, 3-((((1-(3,4-dichlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)methylene)chroman-2,4- dione 8h with IC50 = 20.1 ± 1.5 μM against α-glucosidase, was 37-times more potent than acarbose. Enzyme kinetic study revealed that compound 8h was a competitive inhibitor against α-glucosidase. In silico docking study on chloro derivatives 8h, 8g, and 8i were also performed in the active site of α -glucosidase. Evaluations on obtained interaction modes and binding energies of these compounds confirmed the results obtained through in vitro α-glucosidase inhibition.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3