Affiliation:
1. Chemistry Department, Universidad Nacional de Colombia, Bogota, Colombia
2. Department of Pharmacy, Department Sciences Faculty, Universidad Nacional de Colombia, Bogota, Colombia
Abstract
Glycoproteins and glycopeptides are an interesting focus of research, because of
their potential use as therapeutic agents, since they are related to carbohydrate-carbohydrate,
carbohydrate-protein, and carbohydrate-lipid interactions, which are commonly involved in
biological processes. It has been established that natural glycoconjugates could be an important
source of templates for the design and development of molecules with therapeutic applications.
However, isolating large quantities of glycoconjugates from biological sources
with the required purity is extremely complex, because these molecules are found in heterogeneous
environments and in very low concentrations. As an alternative to solving this
problem, the chemical synthesis of glycoconjugates has been developed. In this context,
several methods for the synthesis of glycopeptides in solution and/or solid-phase have been
reported. In most of these methods, glycosylated amino acid derivatives are used as building
blocks for both solution and solid-phase synthesis. The synthetic viability of glycoconjugates is a critical parameter
for allowing their use as drugs to mitigate the impact of microbial resistance and/or cancer. However, the
chemical synthesis of glycoconjugates is a challenge, because these molecules possess multiple reaction sites and
have a very specific stereochemistry. Therefore, it is necessary to design and implement synthetic routes, which
may involve various protection schemes but can be stereoselective, environmentally friendly, and high-yielding.
This review focuses on glycopeptide synthesis by recapitulating the progress made over the last 15 years.
Publisher
Bentham Science Publishers Ltd.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献