Affiliation:
1. Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
Abstract
The mechanism studies of transition-metal-catalyzed reductive coupling reactions
investigated using Density Functional Theory calculations in the recent ten years have been
reviewed. This review introduces the computational mechanism studies of Ni-, Pd-, Cu- and
some other metals (Rh, Ti and Zr)-catalyzed reductive coupling reactions and presents the
methodology used in these computational mechanism studies. The mechanisms of the transition-
metal-catalyzed reductive coupling reactions normally include three main steps: oxidative
addition; transmetalation; and reductive elimination or four main steps: the first oxidative
addition; reduction; the second oxidative addition; and reductive elimination. The ratelimiting
step is most likely the final reductive elimination step in the whole mechanism.
Currently, the B3LYP method used in DFT calculations is the most popular choice in the structural geometry
optimizations and the M06 method is often used to carry out single-point calculations to refine the energy values.
We hope that this review will stimulate more and more experimental and computational combinations and the
computational chemistry will significantly contribute to the development of future organic synthesis reactions.
Funder
Natural Science Foundation of Shanghai
Publisher
Bentham Science Publishers Ltd.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献