Recent Advances in the Sustainable Synthesis of Quinazolines Using Earth-Abundant First Row Transition Metals

Author:

Zaib Sumera1,Khan Imtiaz2

Affiliation:

1. Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan

2. Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

Abstract

Achieving challenging molecular diversity in contemporary chemical synthesis remains a formidable hurdle, particularly in the delivery of diversified bioactive heterocyclic pharmacophores for drug design and pharmaceutical applications. The coupling methods that combine a diverse range of readily accessible and commercially available pools of substrates under the action of earth-abundant first row transition metal catalysts have certainly matured into powerful tools, thus offering sustainable alternatives to revolutionize the organic synthesis. This minireview highlights the successful utilization of the catalytic ability of the first row transition metals (Mn, Fe, Ni, Cu) in the modular assembly of quinazoline heterocycle, ubiquitously present in numerous alkaloids, commercial medicines and is associated with a diverse range of pharmacological activities. The broad substrate scope and high functional group tolerance of the targeted methods were extensively explored, identifying the future strategic advances in the field. The investigation will also be exemplified with mechanistic studies as long as they are deemed necessary.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3