Synthetic Approaches for Building Tricyclic Cage-like Motifs Found in Indoxamycins

Author:

Haider Saqlain1ORCID,Khan Ikhlas A.1ORCID,Ding Hanfeng2ORCID,Chittiboyina Amar G.1ORCID

Affiliation:

1. National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, United States

2. Department of Chemistry, Zhejiang University, Hangzhou-310058, China

Abstract

Indoxamycins A-F, a novel class of polyketides, were isolated from the saline culture of marine-derived actinomyces by Sato et al. in 2009. Intriguing stereochemical complexity involving tricyclic [5.5.6] cage-like structures with six consecutive chiral centers challenged many organic chemists. Chemical ingenuity, implementation of pioneered reactions along with fine chemical transformations allowed not only the rapid construction of the central core but also allowed minor structural revision and paved the information to delineate the absolute stereostructures of these complex polyketide marine natural products. To achieve the central core structure in indoxamycins A-F, reactions like the Ireland-Claisen rearrangement, an enantioselective 1,6-enyne reductive cyclization, and one-pot cascade reactions of 1,2- addition/oxa-Michael/methylenation were employed. Using the chiral pool approach, the readily available R-carvone was employed as a cost-effective starting material to achieve the concise total syntheses of (-)-indoxamycins A and B, in which Pauson-Khand, Cu-catalyzed Michael addition and tandem retro-oxa-Michael addition/1,2-addition/oxa-Michael addition reactions were employed. The antipodes, (+)-indoxamycins can be easily accessed by simply switching to S-carvone as the starting material. Synthetically prepared indoxamycins A-F are devoid of antiproliferative properties, which disagree with the work reported by Sato and co-workers for (-)- indoxamycins A and F. Nevertheless, ready access to such complex natural products allows probing the untapped potential biological activities of these polyketides including cytotoxicity. A concise overview of interesting, key chemical transformations including named reactions in establishing the architecture of indoxamycins was compiled to inspire organic chemists and help reinvigorate novel strategies for the asymmetric synthesis as well as the development of novel derivatives of indoxamycins with unique physicochemical and biological properties.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3