Direct Catalytic Conversion of Biomass-derived Carbohydrates to Ethyl Levulinate

Author:

Shan Jianrong1,Hao Hengyu2,Shen Feng1,Yang Jirui1,Qiu Mo1,Wang Ruigang1,Guo Haixin1

Affiliation:

1. Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, No. 31 Fukang Road, Nankai District, Tianjin 300191, China

2. Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, No. 31 Fukang Road, Nankai District, Tianjin 300191, China

Abstract

Abstract: Recently, levulinic acid as an important bio-based platform compound has attracted wide attention, and its potential application value is very high. This article focuses on chem-catalytic produced ethyl levulinate (EL) from biomass-derived carbohydrates (C6 carbohydrates) via multiple reaction pathways, which has an energy density comparable to gasoline and has great potential as a fuel additive. This review focuses on recent examples of the synthesis of EL from various materials using homogenous or heterogeneous catalysts. Special emphasis is placed on the understanding of the reaction mechanism and pathways. This review also summarizes the future opportunities and challenges associated with the applications of EL as a fuel additive and in other fields.

Funder

Basic Frontier Project of Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China

Central Public-interest Scientific Institution Basal Research Fund

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3