NMR and FT-IR Investigation Study and Topological Analysis of Various Conformations of 2,5-dimethyl-2,5-dihydroxyl-1,4-dithian using Density Functional Theory Method

Author:

Danaie Elmira1ORCID,Masoudi Shiva1ORCID,Masnabadi Nasrin2ORCID

Affiliation:

1. Department of Chemistry, Islamic Azad University, Central Tehran Branch, Tehran, Iran

2. Department of Chemistry, Islamic Azad University, Roudehen Branch, Roudehen, Iran

Abstract

Abstract: 1,4-dithian-2,5-dihydroxyl is the major source for the synthesis of sulfur-containing heterocyclic compounds such as thiophene and 1,3-thiazole derivatives, which these compounds are widely used in pharmaceuticals and agricultural industries. Sulfur-containing heterocycles, such as 2-aminothiophene, thiazolidine, oxothiazolidine, and thiazoles, can be comprehensively synthesized from dimerization of the derivatives of 1,4-dithian-2,5- dihydroxyl. FT-IR and NMR spectra of axial and equatorial conformations of 2,5-dimethyl-2,5-dihydroxyl-1,4- dithian compound were investigated by density functional theory (DFT) using B3LYP/6-311++G** and M06- 2X/aug-cc-pVDZ computational methods. The topological properties of the electron charge density were calculated by the quantum theory of atoms in molecules (QTAIM) and non-covalent interactions/reduced electron density gradient (NCI-RDG) theoretical methods. The obtained results of the analyses were also discussed in more detail. The results showed that the steric interactions are more prominent than the van der Waals interactions, and in both conformations, steric interactions are included in the middle of the 1,4-dithian ring and there is hydrogen bonding between hydroxyl groups and 1,4-dithian ring structure heteroatoms in the axial conformation while this interaction is not observed in the case of equatorial conformation. The presence of these interactions was confirmed using NBO analysis.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3