Recent Advances in the Light-assisted Synthesis of Ring Junction Nitrogen Heterocycles

Author:

Kumar Periasamy Vinoth1,Aravindraj Kumar1,Madhumitha Gunabalan2,Roopan Selvaraj Mohana2

Affiliation:

1. Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India

2. Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamilnadu, India

Abstract

Abstract: Nitrogen ring junction heterocycles play a crucial role in synthetic organic chemistry due to their remarkable activity. The fused nitrogen ring junction compounds are abundant in nature; they have excellent biological activity and are used against various health issues. To make selective nitrogen ring junction products from the nitrogen ring junction heterocycles, expensive chemicals and catalysts, like expensive transition metal complexes and metal composites, are required. To neglect the drawbacks of conventional synthesis methods like long reaction times, by-product formation, lower selectivity, and low yields, an alternative of nonconventional light-mediated techniques can be opted for. The light source uses a radical mechanism that reduces by-product formation, provides a regio-selective product, increases yield, decreases reaction time, is cost-effective, and does not require special catalysts or chemicals. There are a variety of light sources, viz., UV, visible, IR, laser, and X-ray. The UV, visible light, white, green, and blue LED light sources are widely used in the photochemical method. This review emphasizes the light-mediated synthesis of nitrogen-ring junction heterocyclic compounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3