Super Base Derived Ionic Liquids: A Useful Tool in Organic Synthesis

Author:

Dandela Rambabu1,Chatterjee Rana1,Bhukta Swadhapriya1

Affiliation:

1. Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Samantpuri, Bhubaneswar 751013, India

Abstract

Abstract: Over the last few decades, ionic liquids have been raised as a great appliance to pursue many organic transformations. In the present research, the synthetic application of ILs has emerged largely as solvents, additives, or catalysts. With the developing commercial methods, task-specific ionic liquids have been constructed by appointing guanidine, amidine and other superbasic cations. By the nature of the cation or the anion, the properties of the ionic liquids can be adjusted. In this regard, superbasic ionic liquids have been derived from both acyclic and cyclic guanidine or amidine derivatives. In particular, some common super bases such as 1,1,3,3-tetramethylguanidine (TMG), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,5-diazabicyclo[4.3.0]non-5-ene (DBN), are used to design these special type of ionic liquids. These superbasic ionic liquids have shown a potential activity to accelerate many organic transformations including alcoholysis, esterification, multi-component reaction, Knoevenagel reaction, Michael addition, cyclization, etc. Additionally, because of their novel properties including high liquid range, nonvolatility, high thermal and chemical stability, these classic ionic liquids have a potential environmental impact and they are often found to play a promising role in the field of catalysis, electrochemistry, spectroscopy, and materials science. Not only that, the application of superionic liquids has been widely spread in the industrial and research area, especially, for the chemical transformation of CO2. This review aims to portray an outlook on the organic syntheses that have been promoted by superionic liquids in the last five years.

Funder

DST-SERB

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3