Treatment of Organophosphate Poisoning with Experimental Oximes: A Review

Author:

Lorke Dietrich E.1,Petroianu Georg A.1

Affiliation:

1. Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, University Park GL 495 D, 11200 SW 8th St, Miami 33199, Florida , United States

Abstract

Standard therapy of Organophosphorus Compound (OPC) poisoning with oxime-type acetylcholinesterase (AChE) reactivators is unsatisfactory. New bispyridinium oximes have therefore been synthesized. This review summarizes in vitro characteristics of established (pralidoxime, obidoxime, trimedoxime, HI-6) and experimental (K-)oximes, and compares their protective efficacy in vivo, when administered shortly after exposure to Diisopropylfluorophosphate (DFP) and three OPC pesticides (ethyl-paraoxon, methylparaoxon, azinphos-methyl) in the same experimental setting. In addition to reactivating cholinesterase, oximes also inhibit this enzyme; strongest AChE inhibition (IC50 rat blood: 1-9 µM) is observed in vitro for the oximes with a xylene linker (K-107, K-108, K-113). AChE inhibition is weakest for K-27, K-48 and HI-6 (IC50 >500 µM). Intrinsic AChE inhibition of oximes in vitro (IC50, rat) is strongly correlated with their LD50 (rat): oximes with a high IC50 (K-27, K-48, pralidoxime, obidoxime) also show a high LD50, making them relatively non-toxic, whereas oximes K-107, K-108 and K-113 (low IC50 and LD50) are far more toxic. When given in vivo after OP exposure, best protection is conferred by K-27, reducing the relative risk of death to 16-58% of controls, which is significantly superior to pralidoxime in DFP-, ethyl-paraoxon- and methylparaoxon- exposure, and to obidoxime in ethyl-paraoxon- and methyl-paraoxon-exposure. Marked reduction in mortality is also achieved by K-48, K-53, K-74 and K-75, whereas K-107, K-108 and K-113 have no or only a very weak mortality-reducing effect. K-27 is the most promising K-oxime due to its strong reactivation potency, weak cholinesterase inhibition and high LD50, allowing administration in large, very efficacious dosages.

Funder

GUJCOST, DST

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3