Alcohol-mediated Reduction of Biomass-derived Furanic Aldehydes via Catalytic Hydrogen Transfer

Author:

Xu Yufei1,Long Jingxuan1,He Jian1,Li Hu1

Affiliation:

1. State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou 550025, China

Abstract

With the depletion of fossil energy, liquid biofuels are becoming one of the effective alternatives to replace fossil fuels. The catalytic transfer and hydrogenation of biomass-based furanic compounds into fuels and value-added chemicals has become a spotlight in this field. Gas hydrogen is often used as the H-donor for the hydrogenation reactions. It is a very straightforward and simple method to implement, but sometimes it comes with the danger of operation and the difficulty of regulation. In recent years, diverse liquid hydrogen donor reagents have been employed in the catalytic transfer hydrogenation (CTH) of biomass. Amongst those H-donors, alcohol is a kind of green and benign reagent that has been used in different biomass conversion reactions. This type of reagent is very convenient to use, and the involved operation process is safe, as compared to that of H2. In this review, the application of alcohols as liquid H-donors in the catalytic transfer hydrogenation of biomass-derived furanic compounds is depicted, and the representative reaction mechanisms are discussed. Emphasis is also laid on the selective control of product distribution in the described catalytic systems.

Funder

Guizhou Science & Technology Foundation

Key Technologies R&D Program of China

Fok YingTong Education Foundation

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3