The Diversity of Heterocyclic N-oxide Molecules: Highlights on their Potential in Organic Synthesis, Catalysis and Drug Applications

Author:

Li Dongli1,Wu Panpan1,Sun Ning2,Lu Yu-Jing2,Wong Wing-Leung1,Fang Zhiyuang3,Zhang Kun1

Affiliation:

1. School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P.R, China

2. Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R, China

3. The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, P.R., China

Abstract

The synthesis and chemistry of heterocyclic N-oxide derivatives such as those from pyridine and indazole are very well-known due to their usefulness as versatile synthetic intermediates and their biological importance. These classes of organic compounds have been demonstrated in many interesting and amazing functionalities, particularly vital in the areas including metal complexes formation, catalysts design, asymmetric catalysis and synthesis, and medicinal applications (some potent N-oxide compounds with anticancer, antibacterial, anti-inflammatory activity, etc.). Therefore, the heterocyclic N-oxide motif has been successfully employed in a number of recent advanced chemistry and drug development investigations. In the present review, our primary aim was to provide a relevant summary focusing on the topics of organic synthesis and medical application potential of the compounds cited, which could be attractive and give some insights to researchers in the field. Therefore, we mainly highlight the importance of heterocyclic N-oxide derivatives including those synthesized from imidazole, indazole, indole, pyridazine, pyrazine, pyridine, and pyrimidine in organic syntheses and catalysis, and drug applications. Over the past years, a number of reviews have been published on the organic synthesis and catalysis of N-oxides. We thus concentrated on highlighting those rarely mentioned or recently reported systems.

Funder

Nature Science Foundation of Guangdong Province

National Nature Science Foundation of China

Department of Education Guangdong Province

Science and Technology Program of Guangdong Province

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3