Recent Advances in the Hofmann Rearrangement and Its Application to Natural Product Synthesis

Author:

Debnath Pradip1

Affiliation:

1. Department of Chemistry, Maharaja Bir Bikram College, Agartala, Tripura-799004, India

Abstract

: C-N bond formation reactions are the most important transformations in (bio)organic chemistry because of the widespread occurrence of amines in pharmaceuticals, natural products, and biologically active compounds. The Hofmann rearrangement is a well-known method used for the preparation of primary amines from amides. But, the traditional version of the Hofmann rearrangement often gave relatively poor yields due to over-oxidation or due to the poor solubility of some amides in aqueous base, and created an enormous amount of waste products. Developments over the last two decades, in particular, have focused on refining both of these factors affecting the reaction. This review covers both the description of recent advances (2000-2019) in the Hofmann rearrangements and its applications in the synthesis of heterocycles, natural products and complex molecules of biological interest. It is revealed that organo-catalytic systems especially hypervalent iodine-based catalysts have been developed for the green and environmentally friendly conversion of carboxamides to primary amines and carbamates.

Funder

Department of Science and Technology, Ministry of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3