Recent Advances in the Application of Nanometal Catalysts for Glaser Coupling

Author:

Ebrahimiasl Saeideh1,Behmagham Farnaz2,Abdolmohammadi Shahrzad3,Kojabad Rahman N.1,Vessally Esmail4

Affiliation:

1. Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran

2. Department of Chemistry, Miyandoab Branch, Islamic Azad University, Miyandoab, Iran

3. Department of Chemistry, East Tehran Branch, Islamic Azad University, P.O. Box 18735-138, Tehran, Iran

4. Department of Chemistry, Payame Noor University, Tehran, Iran

Abstract

: Synthesis of symmetrical 1,3-diynes from terminal alkynes through an oxidative process is generally called Glaser coupling. The classic Glaser coupling is catalyzed by copper salts under an atmosphere of molecular oxygen as an oxidant. Over the past years, different metal catalysts and oxidants were successfully used in this atom economical C-C coupling reaction. Moreover, several procedures for the preparation of unsymmetrical 1,3-diynes by coupling two different alkyne substrates have been developed. In this review, we will highlight the usefulness of transition metal nanoparticles as efficient catalysts in homo- and hetero-coupling of alkynes by hoping that it will be beneficial to the development of novel and extremely efficient catalytic systems for this fast-growing and important reaction.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3