Advances in the Synthesis and Antisense Technology Applications of Bridged Nucleic Acid Monomers

Author:

Mangla Priyanka1,Olety Balaji2,Sharma Vivek K.3

Affiliation:

1. St. Francis College for Women, Begumpet, Hyderabad, Telangana, India

2. Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, United States

3. MassBiologics of the University of Massachusetts Medical School, Mattapan, MA 02126, United States

Abstract

: Bridged Nucleic Acids (BNA) or Locked Nucleic Acids (LNA) belong to a class of nucleic acid modification that is obtained by connecting the 2'-O and 4'-C of ribose sugar using a methylene bridge. This ‘bridging or locking’ of ribose sugar has a tremendous impact on the biological and biophysical properties of therapeutic nucleic acids. They have enhanced stability against nucleases and also have a higher binding affinity for the target RNA. Owing to these advantages, BNA is one of the most preferred nucleic acids modifications of antisense oligonucleotides (ASOs). However, the synthesis of BNA monomers is lengthy and low-yielding and requires extensive protection and deprotection of the sugar functionalities. In this article, we aim to review challenges associated with their synthesis and discuss recent chemical, chemo-enzymatic, and transglycosylation strategies employed for the efficient and cost-effective synthesis of BNA monomers and selected BNA analogues.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3