ZnCl2/SiO2 as a New Catalyst for the Eco-Friendly Synthesis of N-Thiocarbamoyl Pyrazoles and Thiosemicarbazones with Antioxidant and Molecular Docking Evaluation as (UppS) Inhibitor

Author:

Shaker Noha1,Kandil Ezz Mohamed1,Osama Yasmen1,Khatab Tamer Kamal2,Khalifa Mohamed E.3

Affiliation:

1. Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt

2. Organometallic-Organometalloid Chemistry Department, Chemical Industries Research Division, National Research Centre, 33 El-Behouth St., Dokki, 12622, Cairo, Egypt

3. Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia

Abstract

The study aimed at a novel catalytic eco-friendly one-pot reaction for the synthesis of some new thiosemicarbazone and N-thiocarbamoyl pyrazole derivatives. The prepared and characterized silica-supported zinc chloride (ZnCl2/SiO2) catalyst has been presented for promoting the one-pot reaction between isothiocyanates (1 mmol), hydrazine (1.2 mmol) and 1,3- dicarbonyl (1 mmol) compounds under solvent-free conditions. The identification data explained that the thiosemicarbazones products were obtained in the case of using ethyl acetoacetate as an example of 1,3-dicarbonyl compounds and N-thiocarbamoyl pyrazole derivatives products were obtained in the case of using acetylacetone as an example of 1,3- dicarbonyl compounds. The presented catalyst silica-zinc chloride has been considered an eco-friendly and recyclable catalyst compared to the other reported catalyst. The biological activity of the synthesized compounds targeting the bacterial cell wall was predicted by the molecular docking as an undecaprenyl pyrophosphate synthase (UppS) inhibitor. Antioxidant data revealed the compounds 2a, 3d, 3e, 3f, 3g, 3h, and 3j to be promising antioxidant agents compared to ascorbic acid as a reference molecule.

Funder

Taif University Researchers Supporting Project

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3