Bioactive Compounds Involved in the Formation of the Sparse Understory Vegetation in Pine Forests

Author:

Kato-Noguchi Hisashi1

Affiliation:

1. Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan

Abstract

The spices of Pinus, the most widespread genus of the Pinaceae family in the northern hemisphere, often have sparse understory vegetation. However, sunlight intensity on the pine forest floor is sufficient for undergrowth. Allelopathy, therefore, is considered to be involved in the formation of sparse understory vegetation. The evidence for the allelopathy of several pine species has accumulated in the literature over the decades. Extracts of pine needle- like leaves, roots, litter, and soil under pine trees suppressed several plant species, including undergrowth plant species of pine forests. A substantial number of secondary metabolites such as terpenoids, phenolics, cinnamic acids, carboxylic acids, fatty acids, and flavonoids have been identified in pine needles and roots, litter and soil under pine trees. The evidence also suggests that some of these compounds are probably released into the soil through the decomposition of the plant litter, and into the surrounding environment as volatiles. The most active compounds found in the pine soil were methyl 15-hydroxy-7-oxodehydroabietate and 7-oxodehydroabietic acid; both compounds may also be formed through the degradation of resin acids, which were found abundantly in pine trees. Bioactive compounds released into the soil and surrounding environment possibly act as allelochemicals and suppress the invasion of undergrowth plants into the forests, resulting in the establishment of the sparse understory vegetation. The paper summarized the allelopathic activity of 16 Pinus species and 38 allelochamicals.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3