Affiliation:
1. Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
Abstract
In recent years, supramolecular systems for nano-medicine, and in particular for
photodynamic therapy, have gained great attention for their uses as smart and engineered
therapeutic agents. We proposed a collection of very recent articles on supramolecular complexes
for photodynamic therapy based on different photosensitizers assembled with cyclodextrins,
cucurbiturils, calixarenes, pillararenes, or involved in nanobox and tweezer structures,
nanoparticles, aggregates and micelles, that are dynamic assemblies inspired to biological
systems. Despite the advantages of traditional Photodynamic therapy (PDT), which is a
non-invasive, reliable and highly selective clinical treatment for several pathological conditions,
different drawbacks are still smothering the applicability of this clinical treatment. In
this contest, a new supramolecular approach is emerging, in fact, the reversible formation of
these supramolecular assemblies, combined with the possibility to modify their dimensions and shapes in the presence
of a guest make them similar to biological macromolecules, such as proteins and enzymes. Furthermore, due to
the relatively weak and dynamic nature of supramolecular assemblies, they can undergo assembly and disassembly
very fast as well as responses to external stimuli, such as biological (e.g. enzyme activation), chemical (e.g. redox
potential or pH), and physical (e.g. temperature, light or magnetic fields). Therefore, the responsiveness of these supramolecular
assemblies represents a highly promising approach to obtain potentially personalized PDT.
Publisher
Bentham Science Publishers Ltd.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献