Physicochemical Properties and Photochemical Reactions in Organic Crystals

Author:

Leyva Elisa1,de Loera Denisse1,Espinosa-González Claudia G.1,Noriega Saúl1

Affiliation:

1. Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi; Manuel Nava No. 6. Zona Universitaria, 78210, San Luis Potosi, SLP, Mexico

Abstract

Background: Molecular organic photochemistry is concerned with the description of physical and chemical processes generated upon the absorption of photons by organic molecules. Recently, it has become an important part of many areas of science: chemistry, biology, biochemistry, medicine, biophysics, material science, analytical chemistry, among others. Many synthetic chemists are using photochemical reactions in crystals to generate different types of organic compounds since this methodology represents a green chemistry approach. Objective & Method: Chemical reactions in crystals are quite different from reactions in solution. The range of organic solid state reactions and the degree of control which could be achieved under these conditions are quite wider and subtle. Therefore, for a large number of molecular crystals, the photochemical outcome is not the expected product based on topochemical principles. To explain these experimental results, several physicochemical factors in crystal structure have been proposed such as defects, reaction cavity, dynamic preformation or photoinduced lattice instability and steric compression control. In addition, several crystal engineering strategies have been developed to bring molecules into adequate orientations with reactive groups in good proximity to synthesize complex molecules that in many cases are not available by conventional methods. Some strategies involve structural modifications like intramolecular substitution with different functional groups to modify intermolecular interactions. Other strategies involve chemical techniques such as mixed crystal formation, charge transfer complexes, ionic and organometallic interactions. Furthermore, some examples of the single crystal to single crystal transformations have also been developed showing an elegant method to achieve regio and stereoselectivity in a photochemical reaction. Conclusion: The several examples given in this review paper have shown the wide scope of photochemical reactions in organic molecular crystals. There are several advantages of carrying photochemical reaction in the solid state. Production of materials unobtainable by the traditional solution phase reactions, improved specificity, reduction of impurities, and enhancement in the yields by the reduction of side reactions. These advantages and the multidisciplinary nature of solid-state photochemistry make this discipline quite likely to develop a lot in the future.

Funder

National Council of Science and Technology (CONACyT)

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry

Reference323 articles.

1. Klan P, Wirz J, , Wiley,, United Kingdom, 3rd ed, Photochemistry of Organic Compounds: From Concepts to Practice., 2010,-

2. Turro NJ, , University Science Books,, United States of America, 1st ed, Modern Molecular Photochemistry., 1991,-

3. , , CRC Press,, Boca Raton, 2nd ed, Horspool; W.; Lenci, F. CRC Handbook of Organic Photochemistry and Photobiology., 2003,-

4. Turro NJ, , University Science Books,, United States of America, 1st ed, Ramamurthy; V.; Scaiano, J.C. Modern Molecular Photochemistry of Organic Molecules., 2010,-

5. Ramamurthy V, Schanze KS, , CRC Press,, Boca Raton, 1st ed, Organic Photochemistry and Photophysics., 2005,-

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3