Acteoside (Verbascoside): A Prospective Therapeutic Alternative against Hepatocellular Carcinoma by Inhibiting the Expression of AXL, FGFR, BRAF, TIE2 and RAF1 Targets

Author:

Talukdar Anupam Das1,Kityania Sibashish1,Nath Rajat1,Nath Deepa2,Patra Jayanta Kumar3

Affiliation:

1. Department of Life Science and Bioinformatics, Assam University, Silchar, India

2. Department of Botany, Guru Charan College, Silchar, India

3. Research Institute Integrative Life Sciences, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea

Abstract

Aim: Hepatocellular carcinoma (HCC) is the world's second leading cause of cancerrelated mortality and the fifth most prevalent cancer overall. Several synthetic and plant-based remedies are in practice to treat diverse liver disorders. Because of their minimal side effects and protective characteristics, plant phenolics have the potential to become alternative therapeutics, replacing currently existing HCC medications. The present study identifies the plant phenolics as having the capacity to inhibit HCC with low side effects and cost efficiency. Background: Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality, despite the proven effectiveness of screening programs for at-risk individuals, the majority of patients have disease progression or tumor characteristics that preclude curative therapies at the time of diagnosis. Acteoside (Verbascoside) is a naturally occurring phenylethanoid glycoside found throughout the plant kingdom. Acteoside is a physiologically active chemical with the number of pharmacological and protective effects against various liver illnesses. Objectives: Currently used HCC medications have a variety of side effects. Plant-based chemicals offer the possibility of treating HCC with minimal side effects. The work is targeted to find the best phytochemical (plant phenolic) lead molecule for future drug development research against Hepatocellular carcinoma. Methods: The targets were selected based on an analysis of relevant literature, and the 3D structures of the selected receptors were obtained in. pdb format from the RCSB-Protein data bank (PDB, http://www.rscb.org/pdb). Based on a review of the literature, sixty plant secondary metabolites, or plant phenolics, were selected. The ligand structures were obtained and downloaded in.sdf format from the NCBI PubChem chemicals database (https://pubchem.ncbi.nlm.nih.gov/). Molecular docking between the receptor and ligands was accomplished using the Molegro Virtual Docker 6.0 (MVD) software. Results: The target RAF1, BRAF chain 1, TIE2 chain 2 FGFR1, FGFR2, AXL, and FGFR4 showed the best binding effectiveness with acteoside compared to their respective positive control. RET chain 1 and BRAF chain 2 acteoside showed prominent binding efficacy after Curcumin, and Epigallocatechingallate, respectively, against positive control. Present findings clearly point towards the potentiality of acteoside in inhibiting various HCC targets. Conclusion: Acteoside may be used as a prominent lead molecule in the future treatment of hepatic cancer with its multifaceted binding efficiencies against various target proteins.

Publisher

Bentham Science Publishers Ltd.

Subject

Organic Chemistry,Computer Science Applications,Drug Discovery,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3